Current and wave effects around windfarm monopile foundations
نویسندگان
چکیده
Laboratory measurements were undertaken to investigate wave and current velocities in the vicinity of a wind turbine monopile foundation, in order to inform environmental impact assessments and to quantify flow variability in the region of the power take off cable. Flow measurements were made up to 15.5 pile diameters (D) downstream of the pile. Measurements were also taken around the perimeter of the pile (~0.75 D from the pile centre) at the approximate representative height of the power cable. In current-only tests, the mean flow was reduced immediately downstream of the pile, but returned to within 5% of background levels by 8.3 D downstream of the pile centre in representative conditions. A new parameterisation of the velocity recovery is given. The turbulent eddy shedding frequency was well predicted by the Strouhal number. Turbulence peaked at 1.5 D from the pile, and the subsequent decay was parameterised. Velocity magnitudes at the side of the pile were up to 1.35 times greater than background flow rates, in line with potential flow theory. Velocities in the wake region were much less than predicted by potential flow theory, corresponding with increased turbulence. Tests with waves indicated that oscillatory velocities reduced immediately down-wave of the pile, but returned quickly to background levels (by 1.65 to 3.5 D of the pile centre). The general near-pile distribution of the orbital velocity maximum was well represented by potential flow theory. Orbital velocities were reduced immediately up-wave and down-wave of the pile. At the side of the pile in wind sea conditions, the velocity increased up to 1.66 times the background level. This increased to 1.85 times in swell conditions. For orthogonal currents and waves, a velocity parameter was calculated as the mean current plus wave orbital velocity, resolved. With the mean current direction as a reference, the maximum flow was observed at the side of the pile. At 0.75 D from the pile centre, the flow was enhanced by up to 1.2 times the no–pile case. Spectral peaks in the velocity were evident at both wave frequency and at the Strouhal frequency, immediately down current from the pile.
منابع مشابه
The nature of scour development and scour protection at offshore windfarm foundations.
Analysis and interpretation of monitoring data for the seabed bathymetry local to offshore windfarm foundations has shown how the scour develops in time and highlighted variations between sites with different seabed sediment characteristics, i.e. sands and clays. Results from European offshore windfarms have generated a unique dataset for comparison with previously published data. Where surfici...
متن کاملSoil–structure reliability of offshore wind turbine monopile foundations
An overview of offshore wind turbine (OWT) foundations is presented, focusing primarily on the monopile foundation. The uncertainty in offshore soil conditions as well as random wind and wave loading is currently treated with a deterministic design procedure, though some standards allow engineers to use a probability-based approach. Laterally loaded monopile foundations are typically designed u...
متن کاملAn Investigation into the Effect of Scour on the Loading and Deformation Responses of Monopile Foundations
Severe foundation scour may occur around monopile foundations of offshore wind turbines due to currents and waves. The so-called p-y curves method is suggested in the existing design recommendations to determine the behavior of monopiles unprotected against scour and the reduction of effective soil stress is accounted for by the extreme scour depth. This conservative design approach does not co...
متن کاملEvaluation of Turbulence on the Dynamics of Monopile Offshore Wind Turbine under the Wave and Wind Excitations
In recent years, the use of offshore wind turbines has been considered on the agenda of the countries which have a significant maritime boundary due to more speed and stability of wind at sea. The aim of this study is to investigate the effect of wind turbulence on the aero-hydrodynamic behavior of offshore wind turbines with a monopile platform. Since in the sea, the wind turbine structures ar...
متن کاملState-of-the-art and Development Needs of Simulation Codes for Offshore Wind Turbines
Offshore wind turbines have been installed in increasing water depths over the last years. Support structures with monopile or gravity based foundation could successfully be used for all realized offshore-projects, but the trend of increasing water depths reached a level that makes application of those relatively simple types of support structures inappropriate. New concepts like tripods or lat...
متن کامل